

 Interfacing FlashRunner 2.0 with NXP KINETIS

14/03/2025

Driver v. 5.14

Moreno Ortolan

NXP KINETIS Families

KINETIS K32 L Series Arm Cortex M4/M0+

K32 L Series: Ultra-Low Power Microcontrollers (MCUs) Optimized for Low-Leakage Applications

Based on the Arm® Cortex®-M4 and Cortex-M0+ architectures, K32 L series MCUs provide software and tool enablement via

MCUXpresso suite of tools, and scalability making this portfolio an ideal fit for IoT applications.

The K32 L series of MCUs is part of NXP's EdgeVerse™ edge computing platform.

KINETIS K Series Arm Cortex M4

Kinetis® K Series: High-Performance Microcontrollers (MCUs) Based on Arm® Cortex®-M4 Core

Kinetis K series MCUs offer optimized performance, scalable integration and low-power capabilities.

https://www.nxp.com/applications/enabling-technologies/edge-computing:EDGE-COMPUTING

KINETIS KL Series Arm Cortex M0+

Kinetis® L Series: Ultra-Low Power Microcontrollers (MCUs) Based on Arm® Cortex®-M0+ Core

Kinetis® L series MCU portfolio includes more than 200 compatible, low-power, high-performance 32-bit MCUs. This series

combines the low-power performance and energy-efficiency of the Arm® Cortex®-M0+ core with the peripheral sets, enablement

and scalability of the Kinetis MCU portfolio of solutions for internet of things (IoT) applications.

KINETIS KV Series Arm Cortex M4/M0+/M7

KV Series: Real-Time Motor Control and Power Conversion MCUs Based on Arm® Cortex®-M0+/M4/M7

KV Series of MCUs are part of the EdgeVerse™ edge computing platform and are designed to support a wide range of BLDC,

PMSM and ACIM motor control as well as digital power conversion applications.

https://www.nxp.com/applications/enabling-technologies/edge-computing:EDGE-COMPUTING

KINETIS KE Series Arm Cortex M4/M0+

Kinetis® E Series: 5V, Robust Microcontrollers (MCUs) Based on Arm® Cortex®-M0+/M4 Core

The 5V KE series of MCUs are part of the EdgeVerse™ edge computing platform and are designed to maintain high-reliability

and robustness in harsh electrical noise environments, targeting white goods and industrial applications.

KINETIS KM Series Arm Cortex M0+

KM Series: Metrology Microcontrollers (MCUs) Based on Arm® Cortex®-M0+ Core

KM series low-power MCUs are part of the EdgeVerse™ edge computing platform and are designed to support single-chip

designs for one-, two- and three-phase electricity meters, flow meters and other precision measurement applications.

https://www.nxp.com/applications/enabling-technologies/edge-computing:EDGE-COMPUTING
https://www.nxp.com/applications/enabling-technologies/edge-computing:EDGE-COMPUTING

KINETIS KW Series Arm Cortex M33/M0+

KW Series: Bluetooth® Smart/Bluetooth Low Energy

Our Bluetooth Smart (Bluetooth Low Energy) solutions include highly integrated SoCs with plentiful Flash and SRAM memory

utilizing Arm® Cortex®-M cores. These products enable ultra-low-power operation without compromising radio performance. In

addition to providing complete SoCs, a host Bluetooth Low Energy stack is provided, as well as several GATT profiles and

services.

KINETIS KEA Series Arm Cortex M0+

Ultra-Reliable KEA Automotive Microcontrollers (MCUs) based on Arm® Cortex®-M0+ Core

Kinetis® EA series of 32-bit Arm® Cortex® MCUs are targeted for a wide range of automotive and industrial applications requiring

the highest level of quality and longevity support.

The Kinetis EA series is an entry point to the broad Arm ecosystem and features:

• A low-power Arm Cortex-M0+ core and 8–128 KB of embedded flash

• Excellent EMC/ESD, high temperature, and low radiated emissions

• Scalable, highly robust performance solution for cost-sensitive automotive applications

• A broad set of reference designs, tools and application notes to help shorten design development and speed time-to-

market

NXP KINETIS Protocol and PIN map

KINETIS devices support the SWD protocol.

#TCSETPAR CMODE <SWD>

NXP KINETIS PIN MAP

NXP KINETIS PIN MAP for KW45 devices

NXP KINETIS Memory Map

NXP KINETIS Memory Map

NXP KINETIS Memory Map for KW45 devices

NXP KINETIS Flash Configuration Field

Flash Configuration Field is an area of Main Flash between the addresses 0x400 and 0x410.

In this area you can set some configuration for the device behaviour.

A random value written here may lock the device forever and any attempt to reprogram it will be failed.

After the execution of #TPCMD MASSERASE UNLOCK this area is blank with 0xFF value except for the Flash Security Byte that is

0xFE.

So, after #TPCMD MASSERASE UNLOCK command, the Flash memory is totally blank except for this 0xFE value and the

Blankcheck operation will give you PASS.

Here an example of Flash Configuration Field for a Kinetis MKE1xZxx device:

If the Kinetis device is not locked, so the Flash Security Byte (FSEC) that is set to 0xFE, but the other protections bytes are not set

to 0xFF, the #TPCMD MASSERASE F command may fail.

NXP KINETIS Flash Masserase Flash and Unlock

If you execute the #TPCMD MASSERASE F command after the #TPCMD CONNECT command, it may happen that #TPCMD

MASSERASE F fails.

This is because Security Bytes could be set in the Flash (Security Bytes are other bytes than the Flash Security Byte).

It is therefore recommended to always execute the #TPCMD MASSERASE UNLOCK command before the #TPCMD MASSERASE F

command.

What happens is that with the #TPCMD MASSERASE UNLOCK command all the Flash bytes are set to 0xFF except the value of the

Flash Security Byte which is set to 0xFE.

Then if #TPCMD MASSERASE F command is then executed, the Flash Security Byte is also set to 0xFF.

So, at this point, all the Flash memory is in the erased state.

Please pay attention now.

If you perform a power off and power on of the board, the Flash Security Byte is set to 0xFF, then the Flash will be secure and

therefore to re-enter the device it will be necessary to re-set this byte back to 0xFE (this is done automatically by the #TPCMD

CONNECT command).

NXP KINETIS Flash Blankcheck

When you run the #TPCMD BLANKCHECK F command you are trying to check if the Flash memory is in the erased state.

By implementation choice, the #TPCMD BLANKCHECK F command gives PASS both if the Flash Security Byte FSEC is equal to

0xFF or if it is equal to 0xFE.

All other bytes of Flash memory must be equal to 0xFF.

NXP KINETIS CPU Speed Calculation

It is necessary for some specific Kinetis devices to calculate the working frequency of the core to correctly set a specific value in

the Flash controller.

This is done empirically via a special procedure when executing the #TPCMD CONNECT command.

Below you will find an example application case:

---#TPCMD CONNECT

Protocol selected SWD.

Entry Clock is 1.00 MHz.

Trying Hot Plug connect procedure.

IDCODE: 0x0BC11477.

Designer: 0x23B, Part Number: 0xBC11, Version: 0x0.

ID-Code read correctly at 1.00 MHz.

JTAG-SWD Debug Port enabled.

Scanning AP map to find all APs.

AP[0] IDR: 0x04770031, Type: AMBA AHB3 bus.

AP[1] IDR: 0x001C0020, Type: JTAG connection.

AP[0] ROM table base address 0xF0002000.

CPUID: 0x410CC600.

Implementer Code: 0x41 - [ARM].

Found Cortex M0+ revision r0p0.

Cortex M0+ Core halted [0.002 s].

Requested Clock is 37.50 MHz.

Generated Clock is 37.50 MHz.

Good samples: 4 [Range 4-7].

IDCODE: 0x0BC11477.

Designer: 0x23B, Part Number: 0xBC11, Version: 0x0.

ID-Code read correctly at 37.50 MHz.

Device configuration:

 * System Reset Status and ID Register: 0x02140400.

 * Family ID: 0x0 - KE0x family.

 * Sub-family ID: 0x2.

 * Revision number: 0x1.

 * Pin ID: 0x4 - 32-pin.

 * Universally Unique Identifier:

 * UID: 0x193D830630314534.

Calculated frequency 15986 KHz, expected 16000 KHz [Δ -0.087502%].

Assuming bus frequency of ~16MHz [0x0F].

Time for Connect: 0.350 s.

>|

NXP KINETIS FlexNVM Partitioning

The basic idea is to divide the FlexNVM memory into two distinct areas.

The first area is always used for data use in which a single copy of the data is saved in each memory address (Data Flash).

The second area into which the secondary flash is divided is called EEprom (EEprom Backup).

In reality it is always of flash technology being a part of Data Flash but the hardware behaviour of the EEprom is emulated.

In fact, the Flash technology allows the rewriting of the memory cell of about 10'000 times while the EEprom technology allows

the rewriting of 1'000'000 times of the data.

Therefore, to obtain this result in the secondary memory used (after the partitioning command) for EEprom use, a data is saved

and copied several times of the EEprom backup memory.

In this way an algorithm manages wear-levelling and it is possible to have the duration of a true EEprom.

To divide the memory with the partitioning command it is necessary to specify specific parameters where the dimensions of the

areas are indicated.

These parameters must be appropriately chosen so that the area reserved as data flash can contain all the data present in the

source image file. The remaining free space can be used as a EEprom Backup.

Kinetis FlexRAM Partitioning Special Commands

#TPCMD SET_ FLEXRAM <RAM|EEPROM>

The Set FlexRAM command changes the function of the FlexRAM:

• When not partitioned for EEPROM, the FlexRAM is typically used as traditional RAM.

• When partitioned for EEPROM, the FlexRAM is typically used to store EEPROM data.

#TPCMD SET_PARTITION <FlexRAM not loaded [1]/loaded [0]> <EEPROM Data Size> <EEPROM-backup Size>
#TPCMD REMOVE_PARTITION

 FlexNVM FlexRAM

 Data Flash EEprom if
 DEPART set FlexRAM EEESIZE
 executed

 EEprom Backup

To handle varying customer requirements, the FlexRAM and FlexNVM blocks can be split into partitions:

1. EEPROM partition (EEESIZE) — The amount of FlexRAM used for EEPROM can be set from 0 Bytes (no EEPROM) to

the maximum FlexRAM size.

The remainder of the FlexRAM not used for EEPROM is not accessible while the FlexRAM is configured for EEPROM.

The EEPROM partition grows upward from the bottom of the FlexRAM address space.

2. Data flash partition (DEPART) — The amount of FlexNVM memory used for data flash can be programmed from 0

bytes (all of the FlexNVM block is available for EEPROM backup) to the maximum size of the FlexNVM block.

3. FlexNVM EEPROM partition — The amount of FlexNVM memory used for EEPROM backup, which is equal to the

FlexNVM block size minus the data flash memory partition size.

The EEPROM backup size must be at least 16 times the EEPROM partition size in FlexRAM.

Kinetis FlexNVM Partitioning Example

FlexRAM not loaded [1]

EEPROM Data Size [512]

EEPROM-backup Size [64]

---#TPCMD SET_PARTITION 1 512 64

Set partition configuration:

 * FlexRAM not loaded during reset sequence.

 * EEPROM Data Size set to 512 Bytes.

 * EEPROM-backup Size set to 64 Kbytes.

Execute Set partition command.

> Executed Set partition command.

Time for Set Partition: 0.091 s

>|

We use the #TPCMD GET_DEVICE_INFORMATIONS to get the new device configuration:

---#TPCMD GET_DEVICE_INFORMATIONS

Device configuration:

 * System Device Identification Register: 0x14270087.

 * Family ID: 0x1 - KE1x Family (Enhanced features).

 * Sub-family ID: 0x4.

 * Series ID: 0x2 - Kinetis E+ series.

 * Ram Size: 0x7 - 64KB.

 * Revision number: 0x0.

 * Project ID: 0x01.

 * Pin ID: 0x07 - 100-pin count.

 * Flash Configuration Register: 0x5B054000.

 * Flash memory size: 512 KB. Protection region size: 16 KB.

 * FlexNVM size: 64KB.

 * EEE SRAM data size: 512 Bytes.

 * Depart set to 0x4 - 0 KBytes Data Flash.

 * Flash access is enabled.

 * FlexRAM is not available as normal RAM.

Time for Get Device Information: 0.003 s

>|

We use the #TPCMD SET_PARTITION to change device partition:

FlexRAM loaded [0]

EEPROM Data Size [64]

EEPROM-backup Size [32]

---#TPCMD SET_PARTITION 0 64 32

Set partition configuration:

 * FlexRAM loaded with valid EEPROM data during reset sequence.

 * EEPROM Data Size set to 64 Bytes.

 * EEPROM-backup Size set to 32 Kbytes.

FlexNVM is already divided into Data Flash and EEprom Backup.

We need to remove partition before set the new one.

To remove partition, we need to use Erase All Blocks command.

This operation erases Flash memory, initialize FlexRAM, verifies all memory contents, releases MCU security.

> Executed Remove partition command.

Execute Set partition command.

> Executed Set partition command.

Time for Set Partition: 0.192 s

>|

We use the #TPCMD GET_DEVICE_INFORMATIONS to get the new device configuration:

---#TPCMD GET_DEVICE_INFORMATIONS

Device configuration:

 * System Device Identification Register: 0x14270087.

 * Family ID: 0x1 - KE1x Family (Enhanced features).

 * Sub-family ID: 0x4.

 * Series ID: 0x2 - Kinetis E+ series.

 * Ram Size: 0x7 - 64KB.

 * Revision number: 0x0.

 * Project ID: 0x01.

 * Pin ID: 0x07 - 100-pin count.

 * Flash Configuration Register: 0x5B083000.

 * Flash memory size: 512 KB. Protection region size: 16 KB.

 * FlexNVM size: 64KB.

 * EEE SRAM data size: 64 Bytes.

 * Depart set to 0x3 - 32 KBytes Data Flash.

 * Flash access is enabled.

 * FlexRAM is not available as normal RAM.

Time for Get Device Information: 0.003 s

>|

We use the #TPCMD REMOVE_PARTITION to remove the partition already created:

---#TPCMD REMOVE_PARTITION

To remove partition, we need to use Erase All Blocks command.

This operation erases Flash memory, initialize FlexRAM, verifies all memory contents, releases MCU security.

> Executed Remove partition command.

Time for Remove Partition: 0.162 s

>|

NXP KINETIS KW45 Devices

Kinetis KW45’s three-core architecture integrates a 96 MHz CM33 application core, dedicated CM3 radio core and an isolated

EdgeLock Secure Enclave.

The Flash-based radio core with dedicated SRAM delivers a highly configurable and upgradeable software-implemented radio,

freeing resources on the main core for customer application space.

The Bluetooth Low Energy 5.3-compliant radio supports up to 24 simultaneous secure connections.

The EdgeLock Secure Enclave’s isolated execution environment provides a set of cryptographic accelerators, key store

operations and secure lifecycle management that minimizes main core security responsibilities.

The KW45 MCU additionally integrates FlexCAN, helping enable seamless integration into an automobile’s in-vehicle or

industrial CAN communication network.

The FlexCAN module can support CAN’s flexible data rate (CAN FD) for increased bandwidth and lower latency.

NXP KINETIS KW45 Architecture

NXP KINETIS KW45 Memory Map

NXP KINETIS KW45 Available ISP commands

ISP commands availability is controlled by lifecycle and token.

Table below shows the ISP commands available for each lifecycle. Details of several commands can be found in

sections below.

NXP KINETIS KW45 Available Properties

Table below shows the available properties (tag) for this device.

NXP KINETIS KW45 Available eFUSE

NXP KINETIS KW45 Specific Commands

One of the most important features of the Kinetis KW45 device is that it is not possible to perform all operations using only the

SWD protocol.

In fact, it is also necessary to use the UART protocol.

Through FlashRunner you can use the UART and SWD simultaneously in the same channel.

Special commands have therefore been added for the KW45 device.

Commands for switch from SWD to UART and vice versa:

#TPCMD SWITCH_TO_SWD
#TPCMD SWITCH_TO_UART

UART commands for read and write properties:

#TPCMD UART_READ_PROPERTY <Property ID>
#TPCMD UART_WRITE_PROPERTY <Property ID> <Property Value>

UART commands for erase memory regions:

#TPCMD UART_FLASH_ERASE_ALL <INTERNAL_FLASH|RADIO_PFLASH|RADIO_USER_IFR>
#TPCMD UART_FLASH_ERASE_REGION <Address> <Byte Count> <INTERNAL_FLASH|RADIO_PFLASH|RADIO_USER_IFR>

UART commands for read memory regions:

#TPCMD UART_READ_MEMORY <Address> <Byte Count> <INTERNAL_FLASH|RADIO_PFLASH|RADIO_USER_IFR>
#TPCMD UART_WRITE_MEMORY <Address> <INTERNAL_FLASH|RADIO_PFLASH|RADIO_USER_IFR> <Data Word 0 - 15>

UART commands for read or write eFUSE:

#TPCMD UART_READ_FUSE <Address>

#TPCMD UART_WRITE_FUSE <Address> <Data ..> <Data ..>
#TPCMD UART_VERIFY_FUSE <Address> <Data ..> <Data ..>

SWD commands for read or write eFUSE:

#TPCMD READ_FUSE <Address>
#TPCMD WRITE_FUSE <Address> <Data ..> <Data ..>

UART command for special SBF procedure:

#TPCMD UART_SEND_SBF_FILE

#TPCMD SWITCH_TO_UART

Syntax: #TPCMD SWITCH_TO_UART

Prerequisites: none

Description: This command is used to switch from SWD to UART protocol

Examples: Correct command execution:

---#TPCMD SWITCH_TO_UART

Attempt to connect via UART protocol (460800bps).

 * Set Boot Config Pin High to Enter ISP Mode.

 * Shuffle DIO: shuffling 2->4, 5->3.

 * Reset Device through RESET Pin (DIO1).

 * Send Init command to target device.

 * Device response correctly to Init command.

Time for Switch to UART: 0.112 s.

 Skipped command execution:

---#TPCMD SWITCH_TO_UART

Skipped: Fpga is already configured to use UART protocol.

Time for Switch to UART: 0.001 s.

#TPCMD SWITCH_TO_SWD

Syntax: #TPCMD SWITCH_TO_SWD

Prerequisites: none

Description: This command is used to switch from UART to SWD protocol

Examples: Correct command execution:

---#TPCMD SWITCH_TO_SWD

Attempt to switch to SWD protocol.

* Set Boot Config Pin Low to Exit ISP Mode.

* Shuffle DIO: shuffling 4->2, 3->5.

* Reset Device through RESET Pin (DIO1).

Try to reconnect using SWD protocol.

Protocol selected SWD.

Entry Clock is 1.00 MHz.

Trying forcing hardware reset high procedure.

IDCODE: 0x6BA02477.

Designer: 0x23B, Part Number: 0xBA02, Version: 0x6.

ID-Code read correctly at 1.00 MHz.

JTAG-SWD Debug Port enabled.

Scanning AP map to find all APs.

AP[00] IDR: 0x84770001, Type: AMBA AHB3 bus.

AP[02] IDR: 0x002A0000, Type: JTAG connection.

AP[29] IDR: 0x54770002, Type: AMBA APB2 or APB3 bus.

AP[30] IDR: 0x24770011, Type: AMBA AHB3 bus.

AP[31] IDR: 0x84770001, Type: AMBA AHB3 bus.

AP[0] ROM table base address 0xE00FF000.

Used Debugger Mailbox to unlock AP buses.

 * Unlock Core M33 AP0 bus through NXP Debug Authentication Protocol.

 * Core M33 AP0 bus unlocked.

CPUID: 0x410FD214.

Implementer Code: 0x41 - [ARM].

Found Cortex M33 revision r0p4.

Cortex M33 Core halted [0.002 s].

Requested Clock is 37.50 MHz.

Generated Clock is 37.50 MHz.

Good samples: 3 [Range 5-7].

IDCODE: 0x6BA02477.

Designer: 0x23B, Part Number: 0xBA02, Version: 0x6.

ID-Code read correctly at 37.50 MHz.

Device Unique ID registers:

 * UID0: 0x4B4B3839, UID1: 0x00005030, UID2: 0x00000002, UID3: 0x00060028.

Device lifecycle configuration: [0x00000407].

 * Serial Wire Debug Instance ID: 0x0.

 * Revocation indicator from OEM Firmware Authentication Public Key: 0x0.

 * Boot-ROM LP wakeup is enabled.

 * Serial download path is enabled.

 * DICE is disabled.

 * Trust Zone Mode is disabled.

 * Debug Authentication is enabled.

 * The debug access control registers remain open when jumping to customer code.

 * Converged Lifecycle is [OEM Open].

Check device memories from ROM API:

 * Flash memory base address: 0x00000000.

 * Flash memory block count: 1.

 * Flash memory total size: 0x00100000 - 1024 KiB.

 * Flash IFR0 memory base address: 0x02000000.

 * Flash IFR0 memory total size: 0x00008000 - 32 KiB.

 * NBU memory base address: 0x48800000.

 * NBU memory block count: 1.

 * NBU memory total size: 0x00040000 - 256 KiB.

 * NBU IFR0 memory base address: 0x48840000.

 * NBU IFR0 memory total size: 0x00008000 - 32 KiB.

Time for Switch to SWD: 0.153 s.

 Skipped command execution:

---#TPCMD SWITCH_TO_SWD

Skipped: Fpga is already configured to use SWD protocol.

Time for Switch to SWD: 0.001 s.

#TPCMD UART_READ_PROPERTY

Syntax: #TPCMD UART_READ_PROPERTY <Property ID>

 <Property ID> Property ID, see Property table above

Prerequisites: #TPCMD SWITCH_TO_UART executed correctly

Description: This command is used to read selected property from KW45 device

The Read Property command is used to query the bootloader about various properties and settings. Each

supported property has a unique 32-bit tag associated with it.

Properties are the defined units of data that can be accessed with the Read Property or Write Property

commands. Properties may be read-only or read-write.

The 32-bit property tag is the only parameter required for Read Property command

Examples: Correct command execution:

---#TPCMD UART_READ_PROPERTY 18

Property ID 18: 28EB5DD91CB588089694FECA508CBE8E.

Time for UART Read Property: 0.003 s.

#TPCMD UART_WRITE_PROPERTY

Syntax: #TPCMD UART_WRITE_PROPERTY <Property ID> <Property Value>

 <Property ID> Property ID, see Property table above

 <Property Value> Property Value, see Property table above

Prerequisites: #TPCMD SWITCH_TO_UART executed correctly

Description: The Write Property command is used to change or alter the values of the properties or options of the

bootloader.

The command accepts the same property tags used with the Read Property command.

However, only some properties are writable.

If an attempt to write a read-only property is made, an error is returned indicating the property is read-only

and cannot be changed.

Examples: Correct command execution:

---#TPCMD UART_WRITE_PROPERTY 0x16 0x00

Time for UART Write Property: 0.002 s.

#TPCMD UART_FLASH_ERASE_ALL

Syntax: #TPCMD UART_FLASH_ERASE_ALL <Memory ID>

 <Memory ID> Memory ID can be INTERNAL_FLASH, RADIO_PFLASH or RADIO_USER_IFR

Prerequisites: #TPCMD SWITCH_TO_UART executed correctly

Description: The Flash Erase All command performs an erase of the entire flash memory.

 If any flash regions are protected, then the Flash Erase All command fails and returns an error status code.

The Flash Erase All command requires memory ID. If memory ID is not specified, the internal flash

(INTERNAL_FLASH) will be selected as default.

Examples: Correct command execution:

---#TPCMD UART_FLASH_ERASE_ALL

Time for UART Flash Erase All: 0.184 s.

#TPCMD UART_FLASH_ERASE_REGION

Syntax: #TPCMD UART_FLASH_ERASE_REGION <Address> <Byte Count> <Memory ID>

 <Address> Memory address aligned to 32-byte

 <Byte Count> Size aligned to 32-byte

 <Memory ID> Memory ID can be INTERNAL_FLASH, RADIO_PFLASH or RADIO_USER_IFR

Prerequisites: #TPCMD SWITCH_TO_UART executed correctly

Description: The Flash Erase Region command performs an erase of one or more sectors of the flash memory.

The start address, and number of bytes are the 2 parameters required for the Flash Erase Region command.

The start and byte count parameters must be 32-byte aligned ([3:0] = 0000) and region specified does fit in the

flash memory space or the Flash Erase Region command fails.

If any part of the region specified is protected, the Flash Erase Region command fails.

Examples: Correct command execution:

---#TPCMD UART_FLASH_ERASE_REGION 0x00000000 0x00000100 INTERNAL_FLASH

Time for UART Flash Erase Region: 0.003 s.

#TPCMD UART_READ_MEMORY

Syntax: #TPCMD UART_READ_MEMORY <Address> <Byte Count> <Memory ID>

 <Address> Memory address aligned to 32-byte

 <Byte Count> Size aligned to 32-byte

 <Memory ID> Memory ID can be INTERNAL_FLASH, RADIO_PFLASH or RADIO_USER_IFR

Prerequisites: #TPCMD SWITCH_TO_UART executed correctly

Description: The Read Memory command returns the contents of memory at the given address, for a specified number of

 bytes. This command can read any region of memory accessible by the CPU and not protected by security.

 The start address, and number of bytes are the two parameters required for Read Memory command.

 INTERNAL_FLASH memory will be selected as default if memory ID is not specified.

Examples: Correct command execution:

---#TPCMD UART_READ_MEMORY 0x00000000 0x00000100 INTERNAL_FLASH

Time for UART Read Memory: 0.010 s.

 On the Terminal Tool you can see:

01|Read[0x00000000]: 0x00 0x40 0x00 0x20 0x41 0x00 0x00 0x00 | 0x41 0x00 0x00 0x00 0x41 0x00 0x00 0x00

01|Read[0x00000010]: 0x41 0x00 0x00 0x00 0x41 0x00 0x00 0x00 | 0x41 0x00 0x00 0x00 0x41 0x00 0x00 0x00

01|Read[0x00000020]: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 | 0x00 0x00 0x00 0x00 0x41 0x00 0x00 0x00

01|Read[0x00000030]: 0x41 0x00 0x00 0x00 0x00 0x00 0x00 0x00 | 0x41 0x00 0x00 0x00 0x41 0x00 0x00 0x00

01|Read[0x00000040]: 0x2D 0xE9 0xF0 0x4D 0x81 0xB0 0x72 0xB6 | 0x99 0x48 0x9A 0x49 0x4F 0xF0 0x00 0x02

01|Read[0x00000050]: 0x4F 0xF0 0x00 0x03 0x4F 0xF0 0x00 0x04 | 0x4F 0xF0 0x00 0x05 0x3C 0xC0 0x88 0x42

01|Read[0x00000060]: 0xFC 0xD3 0x4F 0xF4 0x00 0x54 0x60 0x68 | 0x4B 0xF2 0x59 0x38 0xCF 0xF6 0x7C 0x28

01|Read[0x00000070]: 0x40 0x45 0x2F 0xD1 0x20 0x68 0xB0 0xF5 | 0x00 0x2F 0x2B 0xD8 0xE0 0x68 0xA1 0x68

01|Read[0x00000080]: 0x40 0x1A 0x00 0xF1 0x04 0x0A 0x51 0x46 | 0xA0 0x68 0x01 0x23 0x4F 0xF0 0xFF 0x32

01|Read[0x00000090]: 0x00 0xF0 0xD1 0xF8 0x05 0x46 0x20 0x69 | 0x85 0x42 0x1B 0xD1 0x61 0x69 0xE8 0x43

01|Read[0x000000A0]: 0x88 0x42 0x17 0xD1 0x4F 0xF0 0xFF 0x32 | 0x01 0x23 0x18 0x21 0x4F 0xF4 0x00 0x50

01|Read[0x000000B0]: 0x00 0xF0 0xC1 0xF8 0x05 0x46 0xA0 0x69 | 0x85 0x42 0x0B 0xD1 0xE1 0x69 0xE8 0x43

01|Read[0x000000C0]: 0x88 0x42 0x07 0xD1 0x26 0x68 0xD6 0xF8 | 0x04 0xB0 0x5F 0x46 0x30 0x68 0x80 0xF3

01|Read[0x000000D0]: 0x08 0x88 0xB8 0x47 0x4F 0xF4 0x00 0x34 | 0x60 0x68 0x4B 0xF2 0x59 0x38 0xCF 0xF6

01|Read[0x000000E0]: 0x7C 0x28 0x40 0x45 0x30 0xD1 0x20 0x68 | 0xB0 0xF5 0x00 0x2F 0x2C 0xD8 0xE0 0x68

01|Read[0x000000F0]: 0xA1 0x68 0x40 0x1A 0x00 0xF1 0x04 0x0A | 0x51 0x46 0xA0 0x68 0x01 0x23 0x4F 0xF0

#TPCMD UART_WRITE_MEMORY

Syntax: #TPCMD UART_WRITE_MEMORY <Address> <Memory ID> <Data Word 0 - 15>

 <Address> Memory address aligned to 32-byte

 <Memory ID> Memory ID can be INTERNAL_FLASH, RADIO_PFLASH or RADIO_USER_IFR

 <Data Word 0 - 15> Data/s to be programmed

Prerequisites: #TPCMD SWITCH_TO_UART executed correctly

Description: The Write Memory command writes data provided in the <Data Word 0 - 15> to a specified range of bytes

 in memory. However, if flash protection is enabled, then writes to protected sectors fail.

 Special care must be taken when writing to Flash:

• First, any Flash sector written to must have been previously erased with a Flash Erase All or Flash

Erase Region.

• Writing to Flash requires the start address to be 16-byte aligned ([3:0] = 0000).

• The byte count is rounded up to a multiple of 4, and trailing bytes are filled with the flash erase

pattern (0xFF).

• If the Verify Writes property is set to true, then writes to flash also performs a flash verify program

operation.

 The start address and number of bytes are the 2 parameters required for Write Memory

Examples: Correct command execution:

---#TPCMD UART_FLASH_ERASE_REGION 0x00000000 0x00000100 INTERNAL_FLASH

Time for UART Flash Erase Region: 0.004 s.

---#TPCMD UART_WRITE_MEMORY 0x00000000 INTERNAL_FLASH 0xDEADBEEF

Time for UART Write Memory: 0.003 s.

---#TPCMD UART_READ_MEMORY 0x00000000 0x00000100 INTERNAL_FLASH

Time for UART Read Memory: 0.010 s.

 On the Terminal Tool you can see:

01|Read[0x00000000]: 0xEF 0xBE 0xAD 0xDE 0xFF 0xFF 0xFF 0xFF | 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF

01|Read[0x00000010]: 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF | 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF

01|Read[0x00000020]: 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF | 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF

01|Read[0x00000030]: 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF | 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF

01|Read[0x00000040]: 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF | 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF

01|Read[0x00000050]: 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF | 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF

01|Read[0x00000060]: 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF | 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF

01|Read[0x00000070]: 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF | 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF

01|Read[0x00000080]: 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF | 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF

01|Read[0x00000090]: 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF | 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF

01|Read[0x000000A0]: 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF | 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF

01|Read[0x000000B0]: 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF | 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF

01|Read[0x000000C0]: 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF | 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF

01|Read[0x000000D0]: 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF | 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF

01|Read[0x000000E0]: 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF | 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF

01|Read[0x000000F0]: 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF | 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF

#TPCMD UART_READ_FUSE

Syntax: #TPCMD UART_READ_FUSE <Address>

 <Address> eFUSE address (see table above)

Prerequisites: #TPCMD SWITCH_TO_UART executed correctly

Description: This command is used to read selected eFUSE using UART protocol

Examples: Correct command execution:

---#TPCMD UART_READ_FUSE 0x2B

Fuse 0x2B word 0: 0x00000000.

Fuse 0x2B word 1: 0x00000000.

Fuse 0x2B word 2: 0x00000000.

Fuse 0x2B word 3: 0x00000000.

Fuse 0x2B word 4: 0x00000000.

Fuse 0x2B word 5: 0x00000000.

Fuse 0x2B word 6: 0x00000000.

Fuse 0x2B word 7: 0x00000000.

Time for UART Read Fuse: 0.007 s.

 Correct command execution:

---#TPCMD UART_READ_FUSE 0x0A

Fuse 0x0A word 0: 0x00000007.

Time for UART Read Fuse: 0.003 s.

#TPCMD UART_WRITE_FUSE

Syntax: #TPCMD UART_WRITE_FUSE <Address> <Data ..> <Data ..>

 <Address> eFUSE address (see table above)

 <Data ..> <Data ..> Data to be programmed

Prerequisites: #TPCMD SWITCH_TO_UART executed correctly

Description: This command is used to write selected eFUSE using UART protocol

Examples: Correct command execution:

---#TPCMD UART_WRITE_FUSE 0x1F 34568097079FF27A3E8A2DA14781B922 FD8295B6C00BFA067F00E87F1A168899

Time for UART Write Fuse: 0.003 s.

#TPCMD UART_VERIFY_FUSE

Syntax: #TPCMD UART_VERIFY_FUSE <Address> <Data ..> <Data ..>

 <Address> eFUSE address (see table above)

 <Data ..> <Data ..> Data to be verified

Prerequisites: #TPCMD SWITCH_TO_UART executed correctly

Description: This command is used to verify selected eFUSE using UART protocol

Examples: Correct command execution:

---#TPCMD UART_VERIFY_FUSE 0x1F 34568097079FF27A3E8A2DA14781B922 FD8295B6C00BFA067F00E87F1A168899

Fuse 0x1F word 0: Expected 0x97805634, Read 0x97805634.

Fuse 0x1F word 1: Expected 0x7AF29F07, Read 0x7AF29F07.

Fuse 0x1F word 2: Expected 0xA12D8A3E, Read 0xA12D8A3E.

Fuse 0x1F word 3: Expected 0x22B98147, Read 0x22B98147.

Fuse 0x1F word 4: Expected 0xB69582FD, Read 0xB69582FD.

Fuse 0x1F word 5: Expected 0x06FA0BC0, Read 0x06FA0BC0.

Fuse 0x1F word 6: Expected 0x7FE8007F, Read 0x7FE8007F.

Fuse 0x1F word 7: Expected 0x9988161A, Read 0x9988161A.

Time for UART Verify Fuse: 0.004 s.

#TPCMD READ_FUSE

Syntax: #TPCMD READ_FUSE <Address>

 <Address> eFUSE address (see table above)

Prerequisites: none

Description: This command is used to read selected eFUSE using SWD protocol

Examples: Correct command execution:

---#TPCMD READ_FUSE 0x2B

Fuse 0x2B word 0: 0x00000000.

Fuse 0x2B word 1: 0x00000000.

Fuse 0x2B word 2: 0x00000000.

Fuse 0x2B word 3: 0x00000000.

Fuse 0x2B word 4: 0x00000000.

Fuse 0x2B word 5: 0x00000000.

Fuse 0x2B word 6: 0x00000000.

Fuse 0x2B word 7: 0x00000000.

Time for Read Fuse: 0.007 s.

 Correct command execution:

---#TPCMD READ_FUSE 0x0A

Fuse 0x0A word 0: 0x00000007.

Time for Read Fuse: 0.003 s.

#TPCMD WRITE_FUSE

Syntax: #TPCMD WRITE_FUSE <Address> <Data ..> <Data ..>

 <Address> eFUSE address (see table above)

 <Data ..> <Data ..> Data to be programmed

Prerequisites: none

Description: This command is used to write selected eFUSE using SWD protocol

Examples: Correct command execution:

---#TPCMD WRITE_FUSE 0x1F 34568097079FF27A3E8A2DA14781B922 FD8295B6C00BFA067F00E87F1A168899

Time for Write Fuse: 0.003 s.

#TPCMD UART_SEND_SBF_FILE

Syntax: #TPCMD UART_SEND_SBF_FILE

Prerequisites: #TPCMD SWITCH_TO_UART executed correctly

Description: Send SBF file command is used to do image update on CM33 flash or radio (CM3) flash when security is

 enforced.

 KW45 device receives a secure binary (SB) file, decrypt, authenticate and program the image to the target

 memory.

 CUST_PROD_OEMFW_ENC_SK fuse needs to be programmed correctly to ensure this command can be used

 successfully.

Examples: Correct command execution:

---#TPCMD UART_SEND_SBF_FILE

Get the maximum packet size from device:

 * Maximum packet size is 512 bytes.

Configure the device to Receive SBF file:

 * SBF file size is 0x000302C8 - 197320 bytes.

Start SBF transfer file:

 * 10% of SBF file transferred.

 * 20% of SBF file transferred.

 * 30% of SBF file transferred.

 * 40% of SBF file transferred.

 * 50% of SBF file transferred.

 * 60% of SBF file transferred.

 * 70% of SBF file transferred.

 * 80% of SBF file transferred.

 * 90% of SBF file transferred.

 * 100% of SBF file transferred.

Completed transfer of SBF file.

Time for UART Send SBF file: 7.558 s.

NXP KINETIS S9KEAZ/S9KEAZN Specific Commands
For S9KEAZ/S9KEAZN devices, a very useful special command has been added.

#TPCMD FREQUENCY_TRIM

Syntax: #TPCMD FREQUENCY_TRIM <Frequency[KHz]>

Prerequisites: #TPCMD MASSERASE F executed correctly

Description: Allows the user to calculate the new trim value of the internal needed to achieve the desired <Frequency>.

Note: Allowed range for <Frequency> parameter: 31250 – 39062.50.

 To flash the new trim value, it is sufficient to allocate space into the FRB file or programmer dynamic memory

 at addresses [0x3FE-0x3FF] (SCTRIM, SCFTRIM) together with the rest of the firmware and execute PROGRAM

 F command.

Examples: Correct command execution:

NXP KINETIS Driver Parameters

The standard parameters are used to configure some specific options inside KINETIS driver.

#TCSETPAR ENTRY_CLOCK

Syntax: #TCSETPAR ENTRY_CLOCK <Frequency>

 <Frequency> Accepted parameters 4000000, 2000000, 1000000, 500000, 100000 Hz

Description: Set the JTAG/SWD frequency used in the Connect procedure before raising the PLL of the device, if the device

PLL is available

Note: Default value 1.00 MHz

#TCSETPAR PLL_ENABLED

Syntax: #TCSETPAR PLL_ENABLED <Value>

 <Value> Accepted parameters YES / NO

Description: Enable the PLL of the device at the highest possible frequency if it’s available

Note: Default value YES

#TCSETPAR RESET_HARDWARE

Syntax: #TCSETPAR RESET_HARDWARE <Value>

 <Value> Accepted parameters YES / NO

Description: Use Hardware reset (DIO1) into Connect procedure during halt Cortex Core

 Please leave this parameter to NO except when it is strictly necessary

Usually, the Software Reset is enough to proceed with the reset of the device and to continue with the

programming procedure

Note: Default value NO

#TCSETPAR SAMPLING_POINT

Syntax: #TCSETPAR SAMPLING_POINT <Value>

 <Value> Accepted values are in the range 1-15

Description: Use this parameter to permanently set the sampling point of the FPGA

It is recommended to leave this parameter with the default value

Note: Default value 17

#TCSETPAR UART_CONNECT

Syntax: #TCSETPAR UART_CONNECT <Value>

 <Value> Accepted parameters YES / NO

Description: Connect to the KW45 device directly through UART protocol instead of SWD protocol

Note: Added from driver version 5.12

Default value NO

#TCSETPAR UART_FREQUENCY

Syntax: #TCSETPAR UART_FREQUENCY <Frequency>

 <Frequency> Accepted parameters 460800, 230400, 115200, 57600, 38400, 19200 or 9600 bps

Description: Set the UART frequency used for KW45 devices

Note: Default value 460800 bps

#TCSETPAR QSPI_PROTOCOL

Syntax: #TCSETPAR QSPI_PROTOCOL <Protocol>

 <Protocol> Accepted parameters SPI or QUAD-SPI

Description: Select if you want to communicate with the external memory via the SPI or QUAD-SPI protocol

Note: Default value SPI

#TCSETPAR QSPI_FREQUENCY

Syntax: #TCSETPAR QSPI_FREQUENCY <Frequency>

 <Frequency> Accepted parameters 25, 20, 15, 10, 5 or 1 MHz

Description: Select the frequency to be used to communicate with the external memory via the SPI or QUAD-SPI protocol

Note: Default value 25 MHz

NXP KINETIS Driver Commands

Here you can find the complete list of all available commands for KINETIS driver.

Memories for Generic Kinetis
F → Main Flash
E → FlexNVM or EEprom
X → External Memory

Memories for KW45 Kinetis
f → Program Flash
r → IFR0 ROM Configure (OTP)
u → IFR0 Customer Usage
c → IFR0 CMAC Table
o → IFR0 Over-the-Air update
F → Secure Program Flash
R → Secure IFR0 ROM Configure (OTP)
U → Secure IFR0 Customer Usage
C → Secure IFR0 CMAC Table
O → Secure IFR0 Over-the-Air update
N → Radio Narrowband Unit NBU

#TPCMD CONNECT

#TPCMD CONNECT

This function performs the entry and is the first command to be executed when starting the communication with the device.

Example for MKE17Z256xxx7_1x_MX25L6433F:
Protocol selected SWD.

Entry Clock is 1.00 MHz.

Trying Hot Plug connect procedure.

IDCODE: 0x0BC11477.

Designer: 0x23B, Part Number: 0xBC11, Version: 0x0.

ID-Code read correctly at 1.00 MHz.

JTAG-SWD Debug Port enabled.

Scanning AP map to find all APs.

AP[0] IDR: 0x04770031, Type: AMBA AHB3 bus.

AP[1] IDR: 0x001C0020, Type: JTAG connection.

AP[0] ROM table base address 0xF0002000.

CPUID: 0x410CC601.

Implementer Code: 0x41 - [ARM].

Found Cortex M0+ revision r0p1.

Cortex M0+ Core halted [0.002 s].

Requested Clock is 37.50 MHz.

Generated Clock is 37.50 MHz.

Good samples: 3 [Range 4-6].

IDCODE: 0x0BC11477.

Designer: 0x23B, Part Number: 0xBC11, Version: 0x0.

ID-Code read correctly at 37.50 MHz.

Device configuration:

 * System Device Identification Register: 0x17270207.

 * Family ID: 0x1 - KE1x Family (Enhanced features).

 * Sub-family ID: 0x7.

 * Series ID: 0x2 - Kinetis E+ series.

 * Ram Size: 0x7 - 48KB.

 * Revision number: 0x0.

 * Project ID: 0x04.

 * Pin ID: 0x07 - 100-pin count.

 * Flash Configuration Register: 0x09000000.

 * Flash memory size: 256 KB. Protection region size: 8 KB.

 * Flash access is enabled.

Time for Connect: 0.107 s.

>|

Example for KW45B41Z83:
---#TPCMD CONNECT

Protocol selected SWD.

Entry Clock is 1.00 MHz.

Trying forcing hardware reset high procedure.

IDCODE: 0x6BA02477.

Designer: 0x23B, Part Number: 0xBA02, Version: 0x6.

ID-Code read correctly at 1.00 MHz.

JTAG-SWD Debug Port enabled.

Scanning AP map to find all APs.

AP[00] IDR: 0x84770001, Type: AMBA AHB3 bus.

AP[02] IDR: 0x002A0000, Type: JTAG connection.

AP[29] IDR: 0x54770002, Type: AMBA APB2 or APB3 bus.

AP[30] IDR: 0x24770011, Type: AMBA AHB3 bus.

AP[31] IDR: 0x84770001, Type: AMBA AHB3 bus.

AP[0] ROM table base address 0xE00FF000.

Used Debugger Mailbox to unlock AP buses.

 * Unlock Core M33 AP0 bus through NXP Debug Authentication Protocol.

 * Core M33 AP0 bus unlocked.

CPUID: 0x410FD214.

Implementer Code: 0x41 - [ARM].

Found Cortex M33 revision r0p4.

Cortex M33 Core halted [0.002 s].

Requested Clock is 37.50 MHz.

Generated Clock is 37.50 MHz.

Good samples: 3 [Range 5-7].

IDCODE: 0x6BA02477.

Designer: 0x23B, Part Number: 0xBA02, Version: 0x6.

ID-Code read correctly at 37.50 MHz.

Device Unique ID registers:

 * UID0: 0x4B4B3839, UID1: 0x00005030, UID2: 0x00000002, UID3: 0x00060028.

Device lifecycle configuration: [0x00000407].

 * Serial Wire Debug Instance ID: 0x0.

 * Revocation indicator from OEM Firmware Authentication Public Key: 0x0.

 * Boot-ROM LP wakeup is enabled.

 * Serial download path is enabled.

 * DICE is disabled.

 * Trust Zone Mode is disabled.

 * Debug Authentication is enabled.

 * The debug access control registers remain open when jumping to customer code.

 * Converged Lifecycle is [OEM Open].

Check device memories from ROM API:

 * Flash memory base address: 0x00000000.

 * Flash memory block count: 1.

 * Flash memory total size: 0x00100000 - 1024 KiB.

 * Flash IFR0 memory base address: 0x02000000.

 * Flash IFR0 memory total size: 0x00008000 - 32 KiB.

 * NBU memory base address: 0x48800000.

 * NBU memory block count: 1.

 * NBU memory total size: 0x00040000 - 256 KiB.

 * NBU IFR0 memory base address: 0x48840000.

 * NBU IFR0 memory total size: 0x00008000 - 32 KiB.

Time for Connect: 0.235 s.

>|

#TPCMD MASSERASE

#TPCMD MASSERASE <UNLOCK>

This command performs the internal unlocking routine which consists in 2 phases: permit access to the device and erase

the content of all the programmable memories.

This is done only if the device is actually in secure state, otherwise the command will just pass

The reason behind this is that if a microcontroller is put in secured state, it means that the user does not want anyone

to read the firmware’s stored inside, so the internal erasure process prevents this, in the case unknown people gain

access to the memory space through this command.

At the end of the routine, the FSEC byte is restored to its default value 0xFE and the rest of the memories goes to 0xFF.

#TPCMD MASSERASE <F|E|X>

This command is available for all Kinetis devices except the KW45.

This command performs a masserase for Main Flash, FlexNVM/EEprom or External Memory.

#TPCMD MASSERASE <f|u|c|o|F|U|C|O>

This command is available for only KW45 Kinetis devices.

This command performs a masserase for Program Flash, IFR0 Customer Usage, IFR0 CMAC Table, IFR0 Over-The-Air update,

Secure Program Flash, Secure IFR0 Customer Usage, Secure IFR0 CMAC Table and Secure IFR0 Over-The-Air update.

#TPCMD ERASE

#TPCMD ERASE <F|E>

This command is available for all Kinetis devices except the KW45.

This command performs a sector/page erase for all Main Flash or FlexNVM/EEprom.

#TPCMD ERASE <F|E> <start address> <size>

This command is available for all Kinetis devices except the KW45.

This command performs a sector/page erase for selected part of Main Flash or FlexNVM/EEprom.

#TPCMD ERASE <X> <64KB/32KB/4KB>

This command is available for all Kinetis devices except the KW45.

This command performs a sector erase of 64KB/32KB/4KB for all External Memory.

#TPCMD ERASE <X> <64KB/32KB/4KB> <start address> <size>

This command is available for all Kinetis devices except the KW45.

This command performs a sector erase of 64KB/32KB/4KB for selected part of External Memory.

Enter the Start Address and Size in hexadecimal format.

#TPCMD ERASE <f|u|c|o|F|U|C|O>

This command is available for only KW45 Kinetis devices.

This command performs a sector/page erase for all Program Flash, IFR0 Customer Usage, IFR0 CMAC Table, IFR0 Over-The-Air

update, Secure Program Flash, Secure IFR0 Customer Usage, Secure IFR0 CMAC Table and Secure IFR0 Over-The-Air update.
Enter the Start Address and Size in hexadecimal format.

#TPCMD ERASE <f|u|c|o|F|U|C|O> <start address> <size>

This command is available for only KW45 Kinetis devices.

This command performs a sector/page erase for selected part of Program Flash, IFR0 Customer Usage, IFR0 CMAC Table, IFR0

Over-The-Air update, Secure Program Flash, Secure IFR0 Customer Usage, Secure IFR0 CMAC Table and Secure IFR0 Over-The-

Air update.

Enter the Start Address and Size in hexadecimal format.

#TPCMD BLANKCHECK

#TPCMD BLANKCHECK <F|E|X>

This command is available for all Kinetis devices except the KW45.

Blankcheck is only available for Main Flash, FlexNVM/EEprom and External Memory.

Verify if all memory is erased.

#TPCMD BLANKCHECK <F|E|X> <start address> <size>

This command is available for all Kinetis devices except the KW45.

Blankcheck is only available for Main Flash, FlexNVM/EEprom and External Memory.

Verify if selected part of memory is erased.

Enter the Start Address and Size in hexadecimal format.

#TPCMD BLANKCHECK <f|r|u|c|o|F|R|U|C|O>

This command is available for only KW45 Kinetis devices.

Blankcheck is only available for Program Flash, IFR0 ROM Configure OTP, IFR0 Customer Usage, IFR0 CMAC Table, IFR0 Over-

The-Air update, Secure Program Flash, Secure IFR0 ROM Configure OTP, Secure IFR0 Customer Usage, Secure IFR0 CMAC Table

and Secure IFR0 Over-The-Air update.

Verify if all memory is erased.

#TPCMD BLANKCHECK <f|r|u|c|o|F|R|U|C|O> <start address> <size>

This command is available for only KW45 Kinetis devices.

Blankcheck is only available for Program Flash, IFR0 ROM Configure OTP, IFR0 Customer Usage, IFR0 CMAC Table, IFR0 Over-

The-Air update, Secure Program Flash, Secure IFR0 ROM Configure OTP, Secure IFR0 Customer Usage, Secure IFR0 CMAC Table

and Secure IFR0 Over-The-Air update.

Verify if selected part of memory is erased.

Enter the Start Address and Size in hexadecimal format.

#TPCMD PROGRAM

#TPCMD PROGRAM <F|E|X>

This command is available for all Kinetis devices except the KW45.

Program available for Main Flash, FlexNVM/EEprom and External Memory.

Programs all memory of the selected type based on the data in the FRB file.

#TPCMD PROGRAM <F|E|X> <start address> <size>

This command is available for all Kinetis devices except the KW45.

Program available for Main Flash, FlexNVM/EEprom and External Memory.

Programs selected part of memory of the selected type based on the data in the FRB file.

Enter the Start Address and Size in hexadecimal format.

#TPCMD PROGRAM <f|r|u|c|o|F|R|U|C|O>

This command is available for only KW45 Kinetis devices.

Program available for Program Flash, IFR0 ROM Configure OTP, IFR0 Customer Usage, IFR0 CMAC Table, IFR0 Over-The-Air

update, Secure Program Flash, Secure IFR0 ROM Configure OTP, Secure IFR0 Customer Usage, Secure IFR0 CMAC Table and

Secure IFR0 Over-The-Air update.

Programs all memory of the selected type based on the data in the FRB file.

#TPCMD PROGRAM <f|r|u|c|o|F|R|U|C|O> <start address> <size>

This command is available for only KW45 Kinetis devices.

Program available for Program Flash, IFR0 ROM Configure OTP, IFR0 Customer Usage, IFR0 CMAC Table, IFR0 Over-The-Air

update, Secure Program Flash, Secure IFR0 ROM Configure OTP, Secure IFR0 Customer Usage, Secure IFR0 CMAC Table and

Secure IFR0 Over-The-Air update.

Programs selected part of memory of the selected type based on the data in the FRB file.

Enter the Start Address and Size in hexadecimal format.

#TPCMD VERIFY

#TPCMD VERIFY <F|E|X> <R|S>

R: Readout Mode.

S: Checksum 32 Bit Mode.

This command is available for all Kinetis devices except the KW45.

Verify Readout/Checksum 32bit available for Main Flash, FlexNVM/EEprom and External Memory.

Verify all memory of the selected type based on the data in the FRB file.

#TPCMD VERIFY <F|E|X> <R|S> <start address> <size>

R: Readout Mode.

S: Checksum 32 Bit Mode.

This command is available for all Kinetis devices except the KW45.

Verify Readout/Checksum 32bit available for Main Flash, FlexNVM/EEprom and External Memory.

Verify selected part of memory of the selected type based on the data in the FRB file.

Enter the Start Address and Size in hexadecimal format.

#TPCMD VERIFY <f|r|u|c|o|F|R|U|C|O> <R|S>

R: Readout Mode.

S: Checksum 32 Bit Mode.

This command is available for only KW45 Kinetis devices.

Verify Readout/Checksum 32bit available for Program Flash, IFR0 ROM Configure OTP, IFR0 Customer Usage, IFR0 CMAC Table,

IFR0 Over-The-Air update, Secure Program Flash, Secure IFR0 ROM Configure OTP, Secure IFR0 Customer Usage, Secure IFR0

CMAC Table and Secure IFR0 Over-The-Air update.

Verify all memory of the selected type based on the data in the FRB file.

#TPCMD VERIFY <f|r|u|c|o|F|R|U|C|O> <R|S> <start address> <size>

R: Readout Mode.

S: Checksum 32 Bit Mode.

This command is available for only KW45 Kinetis devices.

Verify Readout/Checksum 32bit available for Program Flash, IFR0 ROM Configure OTP, IFR0 Customer Usage, IFR0 CMAC Table,

IFR0 Over-The-Air update, Secure Program Flash, Secure IFR0 ROM Configure OTP, Secure IFR0 Customer Usage, Secure IFR0

CMAC Table and Secure IFR0 Over-The-Air update.

Verify selected part of memory of the selected type based on the data in the FRB file.

Enter the Start Address and Size in hexadecimal format.

#TPCMD VERIFY F M

This command is available for S9KEAZN8 devices and it is used to margin verify the FLASH memory.

#TPCMD READ

#TPCMD READ <F|E|X>

#TPCMD READ <F|E|X> <start address> <size>

This command is available for all Kinetis devices except the KW45.

Read function for Main Flash, FlexNVM/EEprom and External Memory.

The result of the read command will be visible into the Terminal.

#TPCMD READ <f|r|u|c|o|F|R|U|C|O>

#TPCMD READ <f|r|u|c|o|F|R|U|C|O> <start address> <size>

This command is available for only KW45 Kinetis devices.

Read function for Program Flash, IFR0 ROM Configure OTP, IFR0 Customer Usage, IFR0 CMAC Table, IFR0 Over-The-Air update,

Secure Program Flash, Secure IFR0 ROM Configure OTP, Secure IFR0 Customer Usage, Secure IFR0 CMAC Table and Secure IFR0

Over-The-Air update.

The result of the read command will be visible into the Terminal.

#TPCMD DUMP

#TPCMD DUMP <F|E|X>

#TPCMD DUMP <F|E|X> <start address> <size>

This command is available for all Kinetis devices except the KW45.

Dump function for Main Flash, FlexNVM/EEprom and External Memory.

The result of the dump command will be stored in the FlashRunner 2.0 internal memory.

#TPCMD DUMP <f|r|u|c|o|F|R|U|C|O>

#TPCMD DUMP <f|r|u|c|o|F|R|U|C|O> <start address> <size>

This command is available for only KW45 Kinetis devices.

Dump function for Program Flash, IFR0 ROM Configure OTP, IFR0 Customer Usage, IFR0 CMAC Table, IFR0 Over-The-Air update,

Secure Program Flash, Secure IFR0 ROM Configure OTP, Secure IFR0 Customer Usage, Secure IFR0 CMAC Table and Secure IFR0

Over-The-Air update.

The result of the dump command will be stored in the FlashRunner 2.0 internal memory.

#TPCMD GET_DEVICE_INFORMATIONS

Syntax: #TPCMD GET_DEVICE_INFORMATIONS

Prerequisites: none

Description: This function gets the device information

Note: This command prints into Real Time Log

Examples: Correct command execution:

---#TPCMD GET_DEVICE_INFORMATIONS

Device configuration:

 * System Device Identification Register: 0x14251107.

 * Family ID: 0x1 - KE1x Family (Enhanced features).

 * Sub-family ID: 0x4.

 * Series ID: 0x2 - Kinetis E+ series.

 * Ram Size: 0x5 - 16KB.

 * Revision number: 0x1.

 * Project ID: 0x02.

 * Pin ID: 0x07 - 100-pin count.

 * Flash Configuration Register: 0x3703F000.

 * Flash memory size: 128 KB. Protection region size: 4 KB.

 * FlexNVM size: 32KB.

 * EEE SRAM data size: 2 KB.

 * Depart set to 0xF - 64 KBytes Data Flash.

 * Flash access is enabled.

 * FlexRAM is available as normal RAM.

Time for Get Device Information: 0.003 s.

#TPCMD GET_MEMORY_ID

Syntax: #TPCMD GET_MEMORY_ID

Prerequisites: none

Description: This function gets the device ID from the external memory connected to the Kinetis device

Note: This command is available from libkinetis.so version 5.11

This command prints into Real Time Log and Terminal

Examples: Correct command execution:

Real Time Log:

---#TPCMD GET_MEMORY_ID

Enabled LPSPI clock, core running at 72 MHz.

> Clock to LPSPI module is 72 MHz.

Initialize QSPI GPIO pins.

> QSPI GPIO pins are initialized.

Enabling Kinetis LPSPI peripheral.

 * QSPI frequency set to 25MHz.

 * Chip Select n.0 selected.

> Kinetis QSPI peripheral enabled.

Read external memory ID.

 * QSPI: Memory ID: 0x17609D.

Time for Get Memory ID: 0.021 s.

Terminal:

Memory ID: 0x17609D

#TPCMD RUN

Syntax: #TPCMD RUN <Time [s]>

 <Time [s]> Time in seconds (i.e., 2 s). This time is an optional parameter.

Prerequisites: none

Description: Move the Reset line up and down quickly if no parameter <Time [s]> is inserted.

 #TPCMD RUN <Time [s]> instead moves the Reset line down and high, waits for the entered time.

This command typically can be used to execute the firmware programmed in the device.

#TPCMD READ_MEM8

Syntax: #TPCMD READ_MEM8 <Address> <Byte Count>

 <Address> Address in HEX format (i.e., 0x52002020)

<Byte Count> Byte count in decimal format (i.e., 8 -> eight bytes)

Prerequisites: none

Description: Read memory byte per byte from target KINETIS device

Note: This command prints into Terminal and Real Time Log

Examples: Correct command execution:

---#TPCMD READ_MEM8 0x52002020 8

Read[0x52002020]: 0xF0

Read[0x52002021]: 0xAA

Read[0x52002022]: 0x16

Read[0x52002023]: 0x14

Read[0x52002024]: 0x00

Read[0x52002025]: 0x00

Read[0x52002026]: 0x00

Read[0x52002027]: 0x00

Time for Read Mem: 0.002 s

#TPCMD READ_MEM16

Syntax: #TPCMD READ_MEM16 <Address> <16-bit Word Count>

 <Address> Address in HEX format (i.e., 0x52002020)

<16-bit Word Count> 16-bit Word count in decimal format (i.e., 4 -> four 16-bit words)

Prerequisites: none

Description: Read memory 16-bit word per 16-bit word from target KINETIS device

Note: This command prints into Terminal and Real Time Log

Examples: Correct command execution:

---#TPCMD READ_MEM16 0x52002020 4

Read[0x52002020]: 0xAAF0

Read[0x52002022]: 0x1416

Read[0x52002024]: 0x0000

Read[0x52002026]: 0x0000

Time for Read Mem: 0.002 s

#TPCMD READ_MEM32

Syntax: #TPCMD READ_MEM32 <Address> <32-bit Word Count>

 <Address> Address in HEX format (i.e., 0x52002020)
<32-bit Word Count> 32-bit Word count in decimal format (i.e., 2 -> two 32-bit words)

Prerequisites: none

Description: Read memory 32-bit word per 32-bit word from target KINETIS device

Note: This command prints into Terminal and Real Time Log

Examples: Correct command execution:

---#TPCMD READ_MEM32 0x52002020 2

Read[0x52002020]: 0x1416AAF0

Read[0x52002024]: 0x00000000

Time for Read Mem: 0.002 s

#TPCMD DISCONNECT

#TPCMD DISCONNECT

Disconnect function. Power off and exit.

NXP KINETIS Driver Examples

Here you can see a complete example of NXP KINETIS projects.

1 – NXP KINETIS MKE17Z256xxx7 256KB + 8MB example Commands

MKE17Z256xxx7 Kinetis device with 256 KB Flash and an external memory MX25L6433F with 8 MiB Flash.

#TCSETPAR ENTRY_CLOCK 1000000

#TCSETPAR PROTCLK 37500000

#TCSETPAR PWDOWN 100

#TCSETPAR PWUP 100

#TCSETPAR QSPI_FREQUENCY 25MHz

#TCSETPAR QSPI_PROTOCOL SPI

#TCSETPAR RSTDOWN 100

#TCSETPAR RSTDRV PUSHPULL

#TCSETPAR RSTUP 100

#TCSETPAR VPROG0 5000

#TCSETPAR CMODE SWD

#TPSETSRC 256KB_8MB.frb

#TPSTART

#TPCMD CONNECT

#TPCMD MASSERASE UNLOCK

#TPCMD MASSERASE F

#TPCMD BLANKCHECK F

#TPCMD PROGRAM F

#TPCMD VERIFY F R

#TPCMD VERIFY F S

#TPCMD MASSERASE X

#TPCMD BLANKCHECK X

#TPCMD PROGRAM X

#TPCMD VERIFY X R

#TPCMD VERIFY X S

#TPCMD DISCONNECT

#TPEND

1 – NXP KINETIS MKE17Z256xxx7 256KB + 8MB example Real Time Log

---#TPSTART

Load SWD FPGA version 0x00001215.

>|

---#TPCMD CONNECT

Protocol selected SWD.

Entry Clock is 1.00 MHz.

Trying Hot Plug connect procedure.

IDCODE: 0x0BC11477.

Designer: 0x23B, Part Number: 0xBC11, Version: 0x0.

ID-Code read correctly at 1.00 MHz.

JTAG-SWD Debug Port enabled.

Scanning AP map to find all APs.

AP[0] IDR: 0x04770031, Type: AMBA AHB3 bus.

AP[1] IDR: 0x001C0020, Type: JTAG connection.

AP[0] ROM table base address 0xF0002000.

CPUID: 0x410CC601.

Implementer Code: 0x41 - [ARM].

Found Cortex M0+ revision r0p1.

Cortex M0+ Core halted [0.002 s].

Requested Clock is 37.50 MHz.

Generated Clock is 37.50 MHz.

Good samples: 3 [Range 4-6].

IDCODE: 0x0BC11477.

Designer: 0x23B, Part Number: 0xBC11, Version: 0x0.

ID-Code read correctly at 37.50 MHz.

Device configuration:

 * System Device Identification Register: 0x17270207.

 * Family ID: 0x1 - KE1x Family (Enhanced features).

 * Sub-family ID: 0x7.

 * Series ID: 0x2 - Kinetis E+ series.

 * Ram Size: 0x7 - 48KB.

 * Revision number: 0x0.

 * Project ID: 0x04.

 * Pin ID: 0x07 - 100-pin count.

 * Flash Configuration Register: 0x09000000.

 * Flash memory size: 256 KB. Protection region size: 8 KB.

 * Flash access is enabled.

Time for Connect: 0.110 s.

>|

---#TPCMD MASSERASE UNLOCK

Perform unlocking routine.

 * Chip erase is performed.

 * Chip erase completed. System security disabled.

Time for Masserase U: 0.079 s.

>|

---#TPCMD MASSERASE F

Time for Masserase F: 0.074 s.

>|

---#TPCMD BLANKCHECK F

Time for Blankcheck F: 0.038 s.

>|

---#TPCMD PROGRAM F

Time for Program F: 3.834 s.

>|

---#TPCMD VERIFY F R

Time for Verify Readout F: 0.105 s.

>|

---#TPCMD VERIFY F S

Time for Verify Checksum 32bit F: 0.012 s.

>|

---#TPCMD MASSERASE X

Enabled LPSPI clock, core running at 72 MHz.

> Clock to LPSPI module is 72 MHz.

Initialize QSPI GPIO pins.

> QSPI GPIO pins are initialized.

Enabling Kinetis LPSPI peripheral.

 * QSPI frequency set to 25MHz.

 * Chip Select n.0 selected.

> Kinetis QSPI peripheral enabled.

Read and check external memory.

 * QSPI: Memory ID: Expected 0x1720C2 - Read 0x1720C2.

 * QSPI: Status register 0x00.

 * QSPI: SFDP table supported.

 * QSPI: Flash size check passed: 8MiB.

 * SFDP table not fully supported [Read 0xFFFFFFFF at 0x58].

> Completed read and check external memory.

Configure external memory.

 * SPI protocol selected.

 * Set eight dummy cycles.

 * Use 3-Byte address mode operation.

> External memory configured.

Execute selected command...

Time for Masserase X: 22.965 s.

>|

---#TPCMD BLANKCHECK X

Estimated time for current operation at 25MHz: 2.684 s.

Time for Blankcheck X: 2.882 s.

>|

---#TPCMD PROGRAM X

Time for Program X: 14.536 s.

>|

---#TPCMD VERIFY X R

Time for Verify Readout X: 3.292 s.

>|

---#TPCMD VERIFY X S

Time for Verify Checksum 32bit X: 2.889 s.

>|

---#TPCMD DISCONNECT

>|

1 – NXP KINETIS MKE17Z256xxx7 256KB + 8MB example Programming Times

Operation Timings FlashRunner 2.0

Time for Connect 0.110 s

Masserase Unlock 0.079 s

Masserase Flash 0.074 s

Blankcheck Flash 0.038 s

Program Flash 3.834 s

Verify Readout Flash 0.105 s

Verify Checksum Flash 0.012 s

Masserase External Flash 22.965 s

Blankcheck External Flash 2.882 s

Program External Flash 14.536 s

Verify Readout External Flash 3.292 s

Verify Checksum External Flash 2.889 s

Cycle Time 00:50.870 s

2 – NXP KINETIS KW45 1MB and SBF example Commands

#TCSETPAR PROTCLK 37500000

#TCSETPAR PWDOWN 100

#TCSETPAR PWUP 100

#TCSETPAR RSTDOWN 100

#TCSETPAR RSTDRV OPENDRAIN

#TCSETPAR RSTUP 100

#TCSETPAR UART_FREQUENCY 460800

#TCSETPAR VPROG0 3300

#TCSETPAR CMODE SWD

#TPSETSRC Flash_1MB_plus_SBF.frb

#TPSTART

#TPCMD CONNECT

#TPCMD MASSERASE f

#TPCMD BLANKCHECK f

#TPCMD PROGRAM f

#TPCMD VERIFY f R

#TPCMD VERIFY f S

#TPCMD SWITCH_TO_UART

#TPCMD UART_WRITE_PROPERTY 0x16 0x01

#TPCMD UART_WRITE_FUSE 0x20 B8837DAB262253A7EF9813B3561257 C71DADCD447722D101DF3511217F2733

;Fuse 0x20 cannot be read/verified.

;Fuse 0x20 this slot is for a symmetric key used in encryption of the sb3 container.

;Therefore being of symmetric nature we do not want it to be visible to the user and keep it safe.

;#TPCMD UART_VERIFY_FUSE 0x20 B8837DAB262253A7EF9813B3561257 C71DADCD447722D101DF3511217F2733

#TPCMD UART_WRITE_FUSE 0x1F 3E8A2DA14781B922650D8097079FF27A 7F00E87F1A16B8B3FD8295B6C00BFA06

#TPCMD UART_VERIFY_FUSE 0x1F 3E8A2DA14781B922650D8097079FF27A 7F00E87F1A16B8B3FD8295B6C00BFA06

#TPCMD UART_WRITE_FUSE 0xD 01

#TPCMD UART_VERIFY_FUSE 0xD 01

#TPCMD UART_WRITE_PROPERTY 0x16 0x00

#TPCMD UART_SEND_SBF_FILE

#TPCMD DISCONNECT

#TPEND

2 – NXP KINETIS KW45 1MB and SBF example Real Time Log

---#TPSTART

Load SWD FPGA version 0x00001215.

>|

---#TPCMD CONNECT

Protocol selected SWD.

Entry Clock is 1.00 MHz.

Trying forcing hardware reset high procedure.

IDCODE: 0x6BA02477.

Designer: 0x23B, Part Number: 0xBA02, Version: 0x6.

ID-Code read correctly at 1.00 MHz.

JTAG-SWD Debug Port enabled.

Scanning AP map to find all APs.

AP[00] IDR: 0x84770001, Type: AMBA AHB3 bus.

AP[02] IDR: 0x002A0000, Type: JTAG connection.

AP[29] IDR: 0x54770002, Type: AMBA APB2 or APB3 bus.

AP[30] IDR: 0x24770011, Type: AMBA AHB3 bus.

AP[31] IDR: 0x84770001, Type: AMBA AHB3 bus.

AP[0] ROM table base address 0xE00FF000.

Used Debugger Mailbox to unlock AP buses.

 * Unlock Core M33 AP0 bus through NXP Debug Authentication Protocol.

 * Core M33 AP0 bus unlocked.

CPUID: 0x410FD214.

Implementer Code: 0x41 - [ARM].

Found Cortex M33 revision r0p4.

Cortex M33 Core halted [0.002 s].

Requested Clock is 37.50 MHz.

Generated Clock is 37.50 MHz.

Good samples: 4 [Range 4-7].

IDCODE: 0x6BA02477.

Designer: 0x23B, Part Number: 0xBA02, Version: 0x6.

ID-Code read correctly at 37.50 MHz.

Device Unique ID registers:

 * UID0: 0x4B4B3839, UID1: 0x00005030, UID2: 0x00000001, UID3: 0x00150049.

Device lifecycle configuration: [0x00000407].

 * Serial Wire Debug Instance ID: 0x0.

 * Revocation indicator from OEM Firmware Authentication Public Key: 0x0.

 * Boot-ROM LP wakeup is enabled.

 * Serial download path is enabled.

 * DICE is disabled.

 * Trust Zone Mode is disabled.

 * Debug Authentication is enabled.

 * The debug access control registers remain open when jumping to customer code.

 * Converged Lifecycle is [OEM Open].

Check device memories from ROM API:

 * Flash memory base address: 0x00000000.

 * Flash memory block count: 1.

 * Flash memory total size: 0x00100000 - 1024 KiB.

 * Flash IFR0 memory base address: 0x02000000.

 * Flash IFR0 memory total size: 0x00008000 - 32 KiB.

 * NBU memory base address: 0x48800000.

 * NBU memory block count: 1.

 * NBU memory total size: 0x00040000 - 256 KiB.

 * NBU IFR0 memory base address: 0x48840000.

 * NBU IFR0 memory total size: 0x00008000 - 32 KiB.

Time for Connect: 0.235 s.

>|

---#TPCMD MASSERASE f

Chip erase not supported for flash bank. Switched to sector erase.

Time for Masserase f: 0.215 s.

>|

---#TPCMD BLANKCHECK f

Time for Blankcheck f: 0.089 s.

>|

---#TPCMD PROGRAM f

Time for Program f: 3.523 s.

>|

---#TPCMD VERIFY f R

Time for Verify Readout f: 0.398 s.

>|

---#TPCMD VERIFY f S

Time for Verify Checksum 32bit f: 0.055 s.

>|

---#TPCMD SWITCH_TO_UART

Attempt to connect via UART protocol (460800bps).

 * Set Boot Config Pin High to Enter ISP Mode.

 * Shuffle DIO: shuffling 2->4, 5->3.

 * Reset Device through RESET Pin (DIO1).

 * Send Init command to target device.

 * Device response correctly to Init command.

Time for Switch to UART: 0.112 s.

>|

---#TPCMD UART_WRITE_PROPERTY 0x16 0x01

Time for UART Write Property: 0.002 s.

>|

---#TPCMD UART_WRITE_FUSE 0x20 B8837DAB262253A7EF9813B3561257 C71DADCD447722D101DF3511217F2733

Time for UART Write Fuse: 0.003 s.

>|

---#TPCMD UART_WRITE_FUSE 0x1F 3E8A2DA14781B922650D8097079FF27A 7F00E87F1A16B8B3FD8295B6C00BFA06

Time for UART Write Fuse: 0.004 s.

>|

---#TPCMD UART_VERIFY_FUSE 0x1F 3E8A2DA14781B922650D8097079FF27A 7F00E87F1A16B8B3FD8295B6C00BFA06

Fuse 0x1F word 0: Expected 0xA12D8A3E, Read 0xA12D8A3E.

Fuse 0x1F word 1: Expected 0x22B98147, Read 0x22B98147.

Fuse 0x1F word 2: Expected 0x97800D65, Read 0x97800D65.

Fuse 0x1F word 3: Expected 0x7AF29F07, Read 0x7AF29F07.

Fuse 0x1F word 4: Expected 0x7FE8007F, Read 0x7FE8007F.

Fuse 0x1F word 5: Expected 0xB3B8161A, Read 0xB3B8161A.

Fuse 0x1F word 6: Expected 0xB69582FD, Read 0xB69582FD.

Fuse 0x1F word 7: Expected 0x06FA0BC0, Read 0x06FA0BC0.

Time for UART Verify Fuse: 0.004 s.

>|

---#TPCMD UART_WRITE_FUSE 0xD 01

Time for UART Write Fuse: 0.003 s.

>|

---#TPCMD UART_VERIFY_FUSE 0xD 01

Fuse 0x0D word 0: Expected 0x00000001, Read 0x00000001.

Time for UART Verify Fuse: 0.003 s.

>|

---#TPCMD UART_WRITE_PROPERTY 0x16 0x00

Time for UART Write Property: 0.002 s.

>|

---#TPCMD UART_SEND_SBF_FILE

Get the maximum packet size from device:

 * Maximum packet size is 512 bytes.

Configure the device to Receive SBF file:

 * SBF file size is 0x000302C8 - 197320 bytes.

Start SBF transfer file:

 * 10% of SBF file transferred.

 * 20% of SBF file transferred.

 * 30% of SBF file transferred.

 * 40% of SBF file transferred.

 * 50% of SBF file transferred.

 * 60% of SBF file transferred.

 * 70% of SBF file transferred.

 * 80% of SBF file transferred.

 * 90% of SBF file transferred.

 * 100% of SBF file transferred.

Completed transfer of SBF file.

Time for UART Send SBF file: 7.567 s.

>|

---#TPCMD DISCONNECT

>|

2 – NXP KINETIS KW45 1MB and SBF example Programming Times

Operation Timings FlashRunner 2.0

Time for Connect 0.235 s

Masserase Flash 0.215 s

Blankcheck Flash 0.089 s

Program Flash 3.523 s

Verify Readout Flash 0.398 s

Verify Checksum Flash 0.055 s

Switch to UART protocol 0.112 s

UART Write Property 0.002 s

UART Write eFUSE 0.003 s

UART Write eFUSE 0.004 s

UART Verify eFUSE 0.004 s

UART Write eFUSE 0.003 s

UART Verify eFUSE 0.003 s

UART Send SBF file 7.567 s

Cycle Time 00:12.262 s

NXP KINETIS Driver Changelog

Info about driver versions prior to 4.00

All driver versions prior to 4.00 are to be considered obsolete, please update your driver to the latest version.

Info about driver version 5.00 - 03/02/2023

Upgraded Kinetis driver.

Info about driver version 5.01 - 21/02/2023

Fixed Conditional Masserase for External Memory through Kinetis device.

Info about driver version 5.02 - 19/04/2023

Supported KW45xx devices.

Info about driver version 5.03 - 05/06/2023

Fixed issue for S9KEAZNxx devices with small RAM.

Info about driver version 5.04 - 14/06/2023

Supported MKMx series.

Supported MKL3x and other Kinetis families.

Info about driver version 5.05 - 19/06/2023

Supported MKV1xx series.

Info about driver version 5.06 - 23/06/2023

Fixed connect command for MKW3xx series.

Info about driver version 5.07 - 03/07/2023

Completed support of MK1xx subfamily of Kinetis MK1 series.

Info about driver version 5.08 - 08/09/2023

Completed support of MKE13Z128xxx7.

Info about driver version 5.09 – 09/11/2023

Updated unlock procedure for MKW series.

Info about driver version 5.10 – 30/01/2024

Supported new Kinetis families.

Info about driver version 5.11 – 27/02/2024

Supported new external memories through Kinetis MKEx devices.

Added #TPCMD GET_DEVICE_ID command.

Info about driver version 5.12 – 07/05/2024

Updated error management when the user tries to send a UART command and the KW45xx device is locked.

Added #TCSETPAR UART_CONNECT parameter for KW45 devices to perform UART connect instead of SWD.

Info about driver version 5.13 – 13/12/2024

Updated Kinetis help driver command.

Updated KW45 cache management.

Added KW45 lifecycle management.

Info about driver version 5.14 – 14/03/2025

Updated Kinetis help driver command.

Added command

